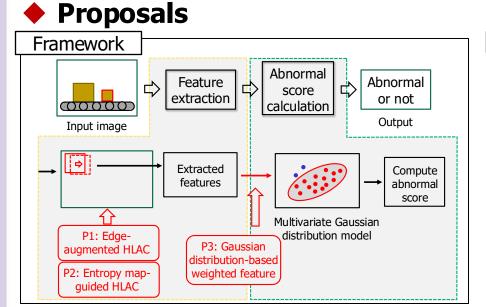
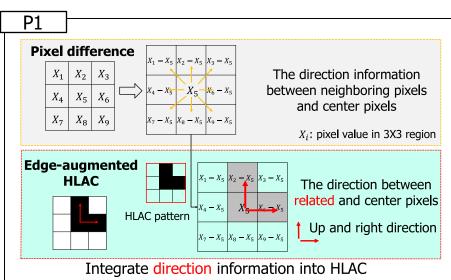
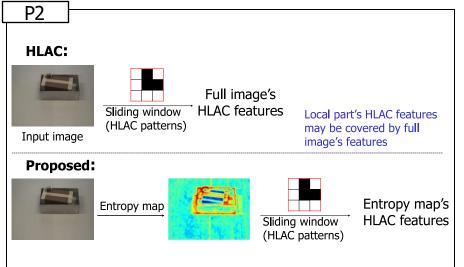
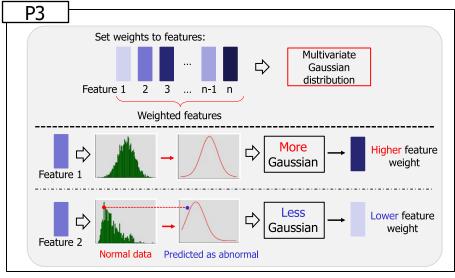

## Edge-Augmented and Entropy Map-Guided HLAC with Gaussian Distribution-Based Weighted Feature Extraction for 1-ms Abnormal Detection System in Logistics


張 原逢 池永研究室 修士課程修了


## Background


Abnormal detection in logistics




- Previous abnormal detection system
  - Gaussian AD based transfer learning and MVG system
  - Complex feature extraction network and hard to realize ultra-low delay
- Target
  - HLAC and MVG based ultra-low delay vision abnormal detection system in logistics









## **Experiment Results**

|            | Precision | Recall | AUROC  | Device                  |           | ZCU104       |
|------------|-----------|--------|--------|-------------------------|-----------|--------------|
| Baseline   | 0.9897    | 0.7237 | 0.9661 | Resource<br>utilization | LUT       | 19064(8.27%) |
| + P1       | 0.9961    | 0.8541 | 0.9807 |                         | BRAM      | 13(4.17%)    |
| + P1,P2    | 0.9962    | 0.8850 | 0.9822 |                         | IO        | 125(34.72%)  |
| + P1,P2,P3 | 0.9938    | 0.9018 | 0.9823 | Performance             | Frequency | 300 MHz      |
| GaussianAD | 0.9947    | 0.8992 | 0.9851 |                         | Delay     | 0.961ms      |

## Conclusion

■ The proposed system achieves better performance in terms of Precision, Recall, and AUROC. Additionally, these hardware-friendly algorithms have been implemented on an FPGA with an ultra-low delay of 0.961ms.

